Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
3.
Clin Infect Dis ; 75(1): e1063-e1071, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-2017768

ABSTRACT

BACKGROUND: At the entry site of respiratory virus infections, the oropharyngeal microbiome has been proposed as a major hub integrating viral and host immune signals. Early studies suggested that infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with changes of the upper and lower airway microbiome, and that specific microbial signatures may predict coronavirus disease 2019 (COVID-19) illness. However, the results are not conclusive, as critical illness can drastically alter a patient's microbiome through multiple confounders. METHODS: To study oropharyngeal microbiome profiles in SARS-CoV-2 infection, clinical confounders, and prediction models in COVID-19, we performed a multicenter, cross-sectional clinical study analyzing oropharyngeal microbial metagenomes in healthy adults, patients with non-SARS-CoV-2 infections, or with mild, moderate, and severe COVID-19 (n = 322 participants). RESULTS: In contrast to mild infections, patients admitted to a hospital with moderate or severe COVID-19 showed dysbiotic microbial configurations, which were significantly pronounced in patients treated with broad-spectrum antibiotics, receiving invasive mechanical ventilation, or when sampling was performed during prolonged hospitalization. In contrast, specimens collected early after admission allowed us to segregate microbiome features predictive of hospital COVID-19 mortality utilizing machine learning models. Taxonomic signatures were found to perform better than models utilizing clinical variables with Neisseria and Haemophilus species abundances as most important features. CONCLUSIONS: In addition to the infection per se, several factors shape the oropharyngeal microbiome of severely affected COVID-19 patients and deserve consideration in the interpretation of the role of the microbiome in severe COVID-19. Nevertheless, we were able to extract microbial features that can help to predict clinical outcomes.


Subject(s)
COVID-19 , Microbiota , Adult , Critical Illness , Cross-Sectional Studies , Dysbiosis , Haemophilus , Humans , Neisseria , SARS-CoV-2
4.
EJHaem ; 1(1): 376-383, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-1898850

ABSTRACT

The clinical course of coronavirus disease 2019 (COVID-19) varies from mild symptoms to acute respiratory distress syndrome, hyperinflammation, and coagulation disorder. The hematopoietic system plays a critical role in the observed hyperinflammation, particularly in severely ill patients. We conducted a prospective diagnostic study performing a blood differential analyzing morphologic changes in peripheral blood of COVID-19 patients. COVID-19 associated morphologic changes were defined in a training cohort and subsequently validated in a second cohort (n = 45). Morphologic aberrations were further analyzed by electron microscopy (EM) and flow cytometry of lymphocytes was performed. We included 45 COVID-19 patients in our study (median age 58 years; 82% on intensive care unit). The blood differential showed a specific pattern of pronounced multi-lineage aberrations in lymphocytes (80%) and monocytes (91%) of patients. Overall, 84%, 98%, and 98% exhibited aberrations in granulopoiesis, erythropoiesis, and thrombopoiesis, respectively. Electron microscopy revealed the ultrastructural equivalents of the observed changes and confirmed the multi-lineage aberrations already seen by light microscopy. The morphologic pattern caused by COVID-19 is characteristic and underlines the serious perturbation of the hematopoietic system. We defined a hematologic COVID-19 pattern to facilitate further independent diagnostic analysis and to investigate the impact on the hematologic system during the clinical course of COVID-19 patients.

5.
J Infect Dis ; 225(2): 190-198, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1630684

ABSTRACT

BACKGROUND: From a public health perspective, effective containment strategies for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) should be balanced with individual liberties. METHODS: We collected 79 respiratory samples from 59 patients monitored in an outpatient center or in the intensive care unit of the University Hospital Regensburg. We analyzed viral load by quantitative real-time polymerase chain reaction, viral antigen by point-of-care assay, time since onset of symptoms, and the presence of SARS-CoV-2 immunoglobulin G (IgG) antibodies in the context of virus isolation from respiratory specimens. RESULTS: The odds ratio for virus isolation increased 1.9-fold for each log10 level of SARS-CoV-2 RNA and 7.4-fold with detection of viral antigen, while it decreased 6.3-fold beyond 10 days of symptoms and 20.0-fold with the presence of SARS-CoV-2 antibodies. The latter was confirmed for B.1.1.7 strains. The positive predictive value for virus isolation was 60.0% for viral loads >107 RNA copies/mL and 50.0% for the presence of viral antigen. Symptom onset before 10 days and seroconversion predicted lack of infectivity with negative predictive values of 93.8% and 96.0%. CONCLUSIONS: Our data support quarantining patients with high viral load and detection of viral antigen and lifting restrictive measures with increasing time to symptom onset and seroconversion. Delay of antibody formation may prolong infectivity.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2 , Seroconversion , Viral Load , Adult , Antibodies, Viral , Antigens, Viral , COVID-19/immunology , Female , Humans , Male , Public Health , RNA, Viral , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Severity of Illness Index
6.
J Clin Invest ; 131(22)2021 11 15.
Article in English | MEDLINE | ID: covidwho-1518200

ABSTRACT

Metabolic pathways regulate immune responses and disrupted metabolism leads to immune dysfunction and disease. Coronavirus disease 2019 (COVID-19) is driven by imbalanced immune responses, yet the role of immunometabolism in COVID-19 pathogenesis remains unclear. By investigating 87 patients with confirmed SARS-CoV-2 infection, 6 critically ill non-COVID-19 patients, and 47 uninfected controls, we found an immunometabolic dysregulation in patients with progressed COVID-19. Specifically, T cells, monocytes, and granulocytes exhibited increased mitochondrial mass, yet only T cells accumulated intracellular reactive oxygen species (ROS), were metabolically quiescent, and showed a disrupted mitochondrial architecture. During recovery, T cell ROS decreased to match the uninfected controls. Transcriptionally, T cells from severe/critical COVID-19 patients showed an induction of ROS-responsive genes as well as genes related to mitochondrial function and the basigin network. Basigin (CD147) ligands cyclophilin A and the SARS-CoV-2 spike protein triggered ROS production in T cells in vitro. In line with this, only PCR-positive patients showed increased ROS levels. Dexamethasone treatment resulted in a downregulation of ROS in vitro and T cells from dexamethasone-treated patients exhibited low ROS and basigin levels. This was reflected by changes in the transcriptional landscape. Our findings provide evidence of an immunometabolic dysregulation in COVID-19 that can be mitigated by dexamethasone treatment.


Subject(s)
Basigin/physiology , COVID-19/immunology , Dexamethasone/pharmacology , SARS-CoV-2 , T-Lymphocytes/metabolism , Adult , COVID-19/metabolism , Cyclophilin A/physiology , Fatty Acids/metabolism , Female , Humans , Male , Middle Aged , Mitochondria/pathology , Reactive Oxygen Species/metabolism
7.
Nat Commun ; 12(1): 3006, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1238000

ABSTRACT

Coronavirus disease 2019 (COVID-19) can lead to pneumonia and hyperinflammation. Here we show a sensitive method to measure polyclonal T cell activation by downstream effects on responder cells like basophils, plasmacytoid dendritic cells, monocytes and neutrophils in whole blood. We report a clear T cell hyporeactivity in hospitalized COVID-19 patients that is pronounced in ventilated patients, associated with prolonged virus persistence and reversible with clinical recovery. COVID-19-induced T cell hyporeactivity is T cell extrinsic and caused by plasma components, independent of occasional immunosuppressive medication of the patients. Monocytes respond stronger in males than females and IL-2 partially restores T cell activation. Downstream markers of T cell hyporeactivity are also visible in fresh blood samples of ventilated patients. Based on our data we developed a score to predict fatal outcomes and identify patients that may benefit from strategies to overcome T cell hyporeactivity.


Subject(s)
COVID-19/immunology , Inflammation/immunology , Lymphocyte Activation/immunology , Pneumonia/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Aged , Basophils/immunology , COVID-19/virology , Cells, Cultured , Dendritic Cells/immunology , Female , Humans , Male , Middle Aged , Monocytes/immunology , Neutrophils/immunology , SARS-CoV-2/physiology , Young Adult
8.
Int J Infect Dis ; 103: 624-627, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1065181

ABSTRACT

A 21-year-old woman was hospitalized due to coronavirus disease 2019 (COVID-19)-associated respiratory and hepatic impairment concomitant with severe hemolytic anemia. Upon diagnosis of secondary hemophagocytic lymphohistiocytosis, immunosuppression with anakinra and steroids was started, leading to a hepatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and viremia. Subsequent liver biopsy revealed virus particles in hepatocytes by electron microscopy and SARS-CoV-2 virus could be isolated and cultured. Immunosuppression was stopped and convalescent donor plasma given. In the differential diagnosis, an acute crisis of Wilson's disease was raised by laboratory and genetic testing. This case highlights the complexity of balancing immunosuppression to control hyperinflammation versus systemic SARS-CoV-2 dissemination.


Subject(s)
COVID-19/complications , Hepatolenticular Degeneration/diagnosis , Liver/virology , Lymphohistiocytosis, Hemophagocytic/etiology , SARS-CoV-2 , Diagnosis, Differential , Female , Humans , Immunosuppression Therapy , Lymphohistiocytosis, Hemophagocytic/diagnosis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL